
Greedy Approximation Algorithm for Set Cover1

• In the set cover problem, we are given a universe U of n elements, and a collection of subsets
{S1, . . . , Sm} of the universe, the goal is to pick the smallest number of sets from among this col-
lection so that their union is the whole universe. More precisely, we need to find2 I ⊆ [m] such that⋃

j∈I Si = U . Note that we may assume
⋃m

i=1 Si = U , otherwise we can simply answer no solution.

Remark: There is a weighted generalization where each subset Si also has a cost c(Si) and the
objective is to minimize the total cost of the sets picked. We will also consider this version.

• The Set Cover problem is one of the canonical problems in approximation algorithms. It generalizes
many different problems and arises in many applications. One example is task assignment : you have
n jobs and m workers, and worker i can perform the subset Si of the jobs. What is the minimum
number of workers you need to complete all jobs? Another is the vertex cover problem : the universe
now is the collection of edges in a graph G = (V,E), and the |V | subsets Sv, corresponding to vertex
v, is the subset of edges incident on v. The set cover problems boils down to : what is the minimum
number of vertices C such that every edge is incident on at least one vertex in C? Since vertex cover
is NP-hard, so is set cover.

Exercise: K Given an undirected graph G = (V,E), a dominating set U is a subset of V such
that every vertex of V is either in U or has a neighbor in U . Explain why the minimum cardinality
dominating set is a set cover problem.

Set Cover is also canonical in that many algorithmic ideas from approximation algorithms can be
illustrated using this problem. It is also one of the oldest problems for which approximation algorithms
were studied. And indeed the most natural algorithm for the problem turns out to be pretty good.

• The Greedy Algorithm.

1: procedure GREEDY SET COVER(U, (S1, . . . , Sm)):
2: Initialize X ← U . . X will denote the collection of uncovered elements.
3: Initialize I ← ∅. . I denotes the indices of the sets picked in our solution.
4: while X 6= ∅ do:
5: Pick j ∈ [m] which maximizes |Sj ∩X|.
6: . That is, the set which covers the maximum number of uncovered elements.
7: I ← I ∪ j.
8: X ← X \ Sj .
9: return I .

1Lecture notes by Deeparnab Chakrabarty. Last modified : 10th Jan, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2[m] denotes {1, 2, . . . ,m}.

1

Theorem 1. GREEDY SET COVER is a (1 + lnn)-approximation algorithm for the set cover
problem.

Proof. Fix an instance (U, (S1, . . . , Sm)) with |U | = n. LetO ⊆ [m] be the optimum solution, and let
k = |O|. Let I denote the set cover returned by the algorithm. We need to prove |I| ≤ (1 + lnn)k. In
fact, we prove something stronger. We show that if n > 1 then |I| ≤ dk lnne which is ≤ (1 + lnn)k.
When n = 1, then clearly both |I| = |O| = 1 and the theorem vacuously holds.

To this end, let xj denote the number of set of uncovered elements before the jth while loop, and let
nj denote the number of elements we cover in the jth while loop. In other words, xj = |X| before
the jth while loop, and nj = |Sj ∩X| where Sj is the set the greedy algorithm picks in the jth while
loop. Note that |I| is the number of while loops. Now, the xj and nj’s satisfy the following.

x1 = n; xj+1 = xj − nj ; nj ≥
xj
k

(1)

The first two follow from definition. The third is where we use the “greediness” of the algorithm and
is key to the analysis. Why is it true? Well, xj is the number of uncovered elements at the beginning
of loop j. We know that the sets of the optimal set cover indexed by O covers all these elements.
Therefore, some St for t ∈ O must cover at least 1

k th of these elements. That is, there exists t ∈ O
with |St ∩X| ≥ xj

k . The algorithm picks Sj with |Sj ∩X| ≥ |St ∩X|, implying nj ≥ xj/k.

The rest of the analysis is “playing around” with (1). We claim the following, and the interested reader
may want to prove this on their own.

Claim 1. For any 1 ≤ j ≤ |I|, xj ≤ n ·
(
1− 1

k

)j−1.

We leave the proof of the claim as an exercise. We now explain why the claim implies |I| ≤ dk lnne.
Suppose not, and say |I| > dk lnne. Since |I| is an integer, this implies |I| ≥ dk lnne+1 ≥ k lnn+1.
At the beginning of the ` := |I|th loop, by Claim 1, we have

x` ≤ n ·
(

1− 1

k

)k lnn

< n · e− lnn = 1

where we have used the oft used and very important inequality “for every real z 6= 0, (1 + z) < ez”
with z = −1/k. Since n > 1, we have k lnn > 0. However, x` < 1, which implies x` = 0 since x`
is an integer, is a contradiction : that would mean X = ∅ at the beginning of the while loop, and so
the loop would terminate.

Exercise: K Show that one can analyze a bit better : argue that |I| ≤ k · (1 + ln (n/k)).
Furthermore, use this to argue that if every set |Si| ≤ d, then GREEDY SET COVER is in fact an
(1 + ln d)-approximation algorithm.

Exercise: K Prove Claim 1 using induction and (1).

2

Exercise: KK The MAX-COVERAGE problem has the same input as set cover, but with an
extra parameter k which is a positive integer in [m]. The objective is to pick k sets, indexed by
I with |I| = k such that |

⋃
j∈I Sj | is maximized. Describe a natural greedy algorithm for this

problem and prove that is an (1− 1
e)-approximation.

• Tightness of Analysis. Whenever one analyses an algorithm, one needs to also wonder if one can
do better. In approximation algorithms, where inequalities abound, one could wonder perhaps some
inequality is “loose”, and perhaps with some more cleverness one can say something better. For
instance, the lnn-factor is loose in the sense that the above exercise could improve to 1 + ln d-factor
which is way better when the subsets are of small size. Can one do even better? Unfortunately, the
answer is in the negative. The following picture illustrates this.

Figure 1: The optimum solution is to pick the 2 blue horizontal sets. The greedy algorithm picks the 4 red
“fatter” sets. Do you see why? This shows that the approximation factor of the algorithm is at least 2. Now
consider the situation where we have 2` − 1 points in each row. The optimum solution still picks the two
horizontal sets, but the algorithm would end up picking ` sets. This shows that the factor is at least log2(1+d)

2 .
Now consider what happens when there are k-horizontal lines. How would the construction change?

The Weighted Version

• Suppose now that every set Sj also had a cost c(Sj), and the objective was to pick the minimum cost
set cover. One then modifies the above algorithm in the obvious way : in the while loop, instead of
picking the set which maximizes the number of new elements covered, one picks the set which has
the best “bang-for-the-buck”, that is, maximizes the number of new elements covered divided by the
cost of the set. For simplicity of the analysis, we describe the algorithm using the reciprocal.

1: procedure WEIGHTED GREEDY SET COVER(U, (S1, . . . , Sm) + costs):
2: Initialize X ← U . . X will denote the collection of uncovered elements.
3: Initialize I ← ∅. . I denotes the indices of the sets picked in our solution.
4: while X 6= ∅ do:
5: Pick j ∈ [m] which minimizes c(Sj)

|Sj∩X| .
6: I ← I ∪ j.
7: X ← X \ Sj .
8: return I .

3

• Analysis. Suppose the number of loops is r, and let’s rename the sets such that Si is the set the
algorithm picks in loop i. We use alg to denote

∑r
i=1 c(Si) the cost of the algorithm. Let’s call the

sets picked in the optimum set cover O1, . . . , O`, and so opt =
∑`

j=1 c(Oj). We use Xi to denote
the set of uncovered elements just before loop i. Thus, X1 = U and Xr+1 = ∅. So, Si ∩Xi is the set
of elements covered at iteration i, and this is precisely Xi \Xi+1.

Theorem 2. WEIGHTED GREEDY SET COVER is anHn-approximation algorithm, whereHn =
1 + 1

2 + · · ·+ 1
n is the nth Harmonic number.

Proof. Greedy choice tells us for all loops i ∈ [r], we have

∀j ∈ [`],
c(Si)

|Si ∩Xi|
≤ c(Oj)

|Oj ∩Xi|
(2)

This is because each set Oj was a possible choice in the ith loop, but the algorithm picked Si instead.

And now we do an “averaging trick” which seems pretty slick, but one gets used to it. We use the fact
that for any two rational numbers a

b ,
c
d , the rational number a+c

b+d is at least min
(
a
b ,

c
d

)
. Applying this

on the RHS of (2), we get that

∀i ∈ [r],
c(Si)

|Si ∩Xi|
≤

∑`
j=1 c(Oj)∑`

j=1 |Oj ∩Xi|
≤ opt

|Xi|
(3)

The last inequality follows since Oj’s form a cover and thus,
⋃`

j=1 (Oj ∩Xi) = Xi. Taking the
|Si ∩Xi| to the right hand side and adding over all i we get

alg =
r∑

i=1

c(Si) ≤︸︷︷︸
(3)

opt ·
r∑

i=1

|Si ∩Xi|
|Xi|

=︸︷︷︸
since Si∩Xi = Xi\Xi+1

opt ·
r∑

i=1

|Xi| − |Xi+1|
|Xi|

≤ opt ·
(

1

|U |
+

1

|U | − 1
+ · · ·+ 1

)
(4)

= opt ·Hn

where (4) is another simple inequality which follows by noticing that the worse case occurs when
each new set covers exactly one element.

Exercise: K Prove (4).

• A Different and Better Analysis. We now show a slightly different way of analyzing the above
algorithm which illustrates an analysis tool called the charging trick in the parlance. This analysis
also gives a better factor. Let d := max |Si| be the size of the largest cardinality set in the collection.

4

Theorem 3. WEIGHTED GREEDY SET COVER is an Hd-approximation algorithm

Proof. Once again let {S1, . . . , Sr} be the sets picked by the algorithm in that order. Recall that we
pick set Si in iteration i because c(Si)

|Si∩Xi| ≤
c(S)
|S∩Xi| for any set St. However, when we pick the set Si in

our solution, the cost increases by c(Si) and not the ratio. Somehow, we need to argue that although
we are locally optimizing for the ratio, we can still upper bound the numerator.

To this end, we do the following “charging trick.” For every element j ∈ Si ∩Xi, that is, each new
element covered by Si, we assign this element a charge αj = c(Si)

|Si∩Xi| . Note that c(Si), by design, is∑
j∈Si∩Xi

αj . Now, at the end of the algorithm, every element will be charged once and only once,
and furthermore

alg =
∑
j∈U

αj

To see why this is helpful, pick any set O in the input. Suppose O has dO ≤ d elements, and rename
them to be {1, 2, . . . , dO} in the order in which they were covered by the greedy algorithm. This is
important.

Now take any element j ∈ O. What do we know about αj? Well, when this element j was being
covered by our algorithm by some set Si in iteration i, we had the choice of picking O. Furthermore,
by design, at this iteration none of the elements in {j, j + 1, . . . , dO} were covered. That is, {j, j +
1, . . . , dO} ⊆ Xi, where Xi is the set of uncovered elements at the beginning of this loop. Since we
picked Si instead of O, we have that the cost-to-new-elements-covered ratio of Si is at most that of
O. And since the former is the charge on the element j, we get

αj ≤
c(O)

|O ∩Xi|
≤ c(O)

dO − j + 1
⇒︸︷︷︸

summing over j = 1 to dO

∑
j∈O

αj ≤ c(O) ·HdO ≤ c(O) ·Hd (5)

In other words, the charges that the greedy algorithm induces on the elements has the following
property : for any set O of the input, the total charge on the elemnts in O is at most Hd times more
than the cost of the set.

Now, let {O1, . . . , O`} be the sets picked by the optimal set cover. Using the fact that it is a cover, we
can finish the proof of our theorem as follows.

alg =
∑
j∈U

αj ≤︸︷︷︸
Oi’s form a cover

∑̀
i=1

∑
j∈Oi

αj ≤︸︷︷︸
(5)

∑̀
i=1

c(Oi) ·Hd = opt ·Hd

Notes

The set cover problem is the classic approximation algorithms problem. The analysis of the greedy algorithm
is present in the papers [4] by Johnson and [5], while the weighted set cover result is from the paper [1] by
Chvatal. On the other hand, obtaining an (1 − ε) lnn-approximation for any constant ε > 0 would imply
P = NP . These result is present in the papers [6], [3], and [2] by Lund and Yannakakis who showed an
Ω(lnn) hardness, Feige who showed this under a stronger complexity theoretic assumption, and Dinur and
Steurer, who obtained the final result. See [7] for a short survey on the set cover problem.

5

References

[1] V. Chvátal. A greedy heuristic for the set covering problem. Math. Oper. Res., 4:233–235, 1979.

[2] I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proc., ACM Symposium on Theory
of Computing (STOC), pages 624–633, 2014.

[3] U. Feige. A Threshold of ln n for Approximating Set Cover. Journal of the ACM, 45, 1998.

[4] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System Sci., 9:256–
278, 1974.

[5] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics, 13(4):383–390,
1975.

[6] C. Lund and M. Yannakakis. On the Hardness of Approximating Minimization Problems. Journal of
the ACM, 41(5):960–981, Sept. 1994.

[7] N. E. Young. Greedy set-cover algorithms. Encyclopedia of algorithms, pages 379–381, 2008.

6

